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Pinning of a solid-liquid-vapor interface by stripes of obstacles

Jérgen Vitting Andersen
Laboratoire de Physique de la Mat& Condense, Universitede Nice-Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France

Yves Brehet
Laboratoire de Thermodynamique et Physico-Chimigaiigrgique, Institut National Polytechnique de Grenoble, tBdPostale 25,
Domaine Universitaire de Grenoble, 38402 St. Martin dféte France
(Received 17 October 1995

We use a macroscopic Hamiltonian approach to study the pinning of a solid-liquid-vapor contact line on an
array of equidistant stripes of obstacles perpendicular to the liquid. We propose an estimate of the density of
pinning stripes for which collective pinning of the contact line happens. This estimate is shown to be in good
agreement with Langevin equation simulation of the macroscopic Hamiltonian. Finally we introduce a two-
dimensional mean field theory that for small strength of the pinning stripes and for small capillary length gives
an excellent description of the averaged height of the contact line.

PACS numbgs): 68.10—m, 68.45.Gd, 68.45.Ws

I. INTRODUCTION heterogeneities becomes a collective phenomenon. We hope
by studying this simple case to understand some of the im-
The spreadingwetting of a liquid on a solid is important portant physics that is involved in the more complex case of
in a widespread field of practical applications such as lubricompletely random pinning sites.
cation, the efficiency of detergents, oil recovery in a porous
medium, and the stability of paint coatinffs]. The motion Il. A MACROSCOPIC HAMILTONIAN APPROACH TO
of the interface is often extremely sensitive to impurities and THE PINNING OF SOLID-LIQUID-VAPOR INTERFACES
roughness, which tend to pistick) the interface. Different . -
situgtions arise for the mo{i)on of the boundary line between The_ geometry O.f the proplem.ls chosen so that. the liquia-
a solid, liquid, and vapofcalled the triple line or the contact vapor interface is in the&-y direction and the solid is pulled

line) depending on the heterogeneity of the solid and dependﬁrtica”.y 9”t Ef the qugid'én th% dri]re?tiond The Ofigi”f"f
ing on whether the liquid completely wets the solid surfacel€Z axis Is taken to coincide with the liquid-vapor interface.

[2] or incompletely wets the solifB—13. Due to the pres- The Iogal .sur_fac.:e energies for the liquid-gas _interfa@g,
ence of a microscopic precursor film that advances ahead &€ Solid-liquid interfaceys (y,2), and the solid-gas inter-

the macroscopic liquid, the case of complete wetting is nol@c€ Ysa(y;2) determine a local force balance expressed by

ticeably insensitive to the heterogeneity of the solid. In the'0Ung's[19] relation:
incomplete wetting case obstacles tend to pin the contact _
line, which makes the statics and dynamics of the contact 7s(Y,2) + 71.6C0H(Y,2) = ¥sely, 2). D

line highly sensitive to the specific form of the heterogeneity ; ;

of the solid. The accepted reason for this dependance is trgq()ﬁdzgr:z ttui :ic;cuai\(limacroscoplc contact angle between the
variability of the local wetting angle with roughness or fluc-
tuations in chemical composition. As a consequence of these
fluctuations, the contact angles for a proceeding or a reced- LM 1
ing liquid are not equal, and this hysteresis in the macro.—%=f f dxdynghz(x,y)

scopic wetting angle is the signature of the pinning of the 0.Jo

triple line by heterogeneities. Similar kinds of problems are L (M _

also encountered in other situations where an elastic body is + VLGJ f dxdyv1+[Vh(x,y)]?
pinned by a random potenti§l4] such as flux pinning of 00

The Hamiltonian reads

type-ll high-T. superconductorgl5], pinning of charge den- M (h(0y) M [N
sity waveg 16], pinning of magnetic domain wall4.7], and +f f ddeySL(y,z)Jrf f dydzysdy,2),
dislocation pinnind18]. 0 /o 0 Jh(0y)

We have proposed a macroscopic Hamiltonian approach 2)

to study the pinning of a solid-liquid-vapor interface when a

solid is pulled vertically out of a liquidcalled the immersion wherep is the mass density of the liquidssumed constagnt
geometry. We investigate the simple case of the statics of arandg the gravity constant. The first term in this expression is
array of equidistant stripes of obstacles, and we study howhe gravity potential energy, the second term describes the
the averaged height of the triple line depends on the capillargurface energy between the liquid and the gas, and the last
length and the density and strength of the stripes. Investigatwo terms account for the surface energies due to contact
ing those dependences allows us to determine precisely tHeetween the solid wall and the liquid, respectively, gas phase
conditions for which the interaction of the triple line with the [20].
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If one considers how the Hamiltonian changes by a smaltize Ah for each set of parameter values used in a simula-
change in dh(x,y), the three parametersyg(y,2), tion. In this paper we have instead used Langevin equation
vsa(Y,2), and y ¢ that enters the Hamiltonian, can be ex- simulations of Eq(3) since it was found to be computation-
pressed in terms of just two variables, namely, the liquid-gaslly more efficient than the Monte Carlo simulations. That is,
surface energyy, ¢ and the macroscopic contact angle we have numerically solved the equation
0(y,h(x,y)) using Young’s relation Eq(l):

sh(x,y) SF

S R st sh(xy)
Shixy) —PIN0Y) ~ VA0 {1+ [Fhixy) 2} 2 o)

®)

I' is a mobility constantt is the time that we let go to
+y6V2h(,Y){1+[Vh(x,y) 12 ¥ Vh(x,y)]? infinity in order to find the equilibr?um state, _ar.ﬁ is the _

free energy of the system, which we will assume is
— yLecod O(y,h(x,y))]8(%). (3 .7~.7, since we neglect fluctuations due to the temperature.

In order to take proper account of the boundary condition for

The sole quantity that has the dimensions of a length ighe contact of the liquid with the solid plate one has that
called the capillary length and is defined as

I POV _ o oy h(oy)). ®)
K=/ o (4) X o

. o . This condition has to be introduced via a Langrange
On the length scales for which the Hamiltonian EB) is  multiplyer as an extra term to the Hamiltonian H8), or
supposed to be valid, one can safely ignore fluctuations dugquivalently one leaves out the contact terms in the energy
to the temperature, so the prOblem of flndlng the ConﬁguraEq_ (2) (Wthh amounts to |ea\/ing out the term
tion h(x,y) that minimizes7 is a zero temperature problem. — , ~cog(y,h(x,y))]18(x) in Eq. (3) and expresses them
One way to obtain the equilibrium configuratidrix,y) instead via Eq(6)).
described by the Hamiltonian E(P) is to perform simulated  when discretizing Eq(5) the functional form ofé for a

annealing using Monte Carlo simulation. Notice that sincerealization of stripes of obstacles takes the form
only the changeof the total energy is needed in a Monte

Carlo update, the equilibrium state is completely specified by 0(Y,2) = Smodulugy.i)00’ T (1= Smoduiugy.in0) 0 (7)

the three variablepg, 6(y,z), and y, . In Ref.[4] simu-

lated annealing was carried out for the c#%&,z) =const, with 6’ the value for the contact angle on the stripes of
and for the case of equidistant stripes of obstagléth con-  obstacles,f the value of the contact angle between the
tact angled’) in the z direction. The case(y,z)=const stripes of obstacles, and<sli<L/a an integer determining
served as a check of the validity of E@) since the profiles the density (Bsc<1) of pinning stripes. One notices that
h(x,y) can be directly compared to various analytical resultsdue to translational invariance in tlzedirection, there is no
[21]. Initial findings for the case of stripes of obstacles indi- pinning force acting when the liquid is pulled vertically out
cated that the averaged height of the triple litke(0,y)), of the liquid, whereas a rotation of the solid about an axis in
was linear in the density of pinning sites, for small values the x-y plane or a translation of the solid in tlyedirection

of ¢ and with a crossover to nonlinear behavior for-1.  produces a pinning force.

The density for which the crossover happenet, was an

increasing function of ¥. This is to be expected, since for . RESULTS

small c a given pinning stripe does not feel the presence of ] ) ) ) .
the other pinning stripes, ar{#(0,y)) can be obtained as a In Fig. 1 is shown- the avelraged height of the triple line
simple superposition over all the pinning stripes of the pro{h) versus the density for different values ofx from a
files of individual stripes that pin the liquid-vapor interface. humerical calculation of Eq$5)—(7). The discretization pa-
On the other hand whenbecomes larger the pinning stripes fameter was chosea=0.04 (the same for all the results
mutually (collectively) lift the liquid, and the resulting pro- represented in this papera typical time step At

file h(0y) cannot be obtained as a simple superposition over* 10__4— 10”2 depending on the values af6,6',c; the lat-
the pinning stripes. Therefore one expects that collective pintice sizes were chosen betwekhax M/a=100x100 and
ning sets in once the averaged distance between pinnirg/@xM/a=100x400 with the larger lattice size for larger
stripes,d, becomes of the order of the capillary length ~ « and the number of time steps to reach equilibrium in the
giving c* ~1/d~1/k. We show in this paper that another range 2<10°—1°. The distance between two pinning
length scale enters the problem, so that the above mention&dfipes,d, is given by the total length of the solid in the

argument has to be modified. direction, divided by the total number of stripes:
It turns out that simulated annealing has the disadvantage
of requiring large amounts of computing time, since one _ L _a
; . d= =—. ®
needs to perform a slow annealing sequeii¢g [22] in cl/a c

order to bypass metastable configurations. Furthermore, the

optimal sequenc@(t) depends on the parametets6’, ¢,  Therefore the critical density’ for which collective pinning
«, and the lattice constarst, and one should in principle should set in, given by equating this distangewith the
determine the optimal sequendét) and the optimal step capillary lengthx, is
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FIG. 1. The averaged height of the triple lifie) vs the density
c for different values ok. k=4 (), 2 (+), and 1 ¢), respectively.
0=m2 rad. ' =1.5 rad.
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FIG. 3. The averaged height of the triple litie) vs the density
¢ for different values ofg. k=0.5, ¢ =1.0 rad.#=0.5 rad(X), 1.2
(A), @2 (¢), —0.5 (+), and —1.0 (OJ), respectively. The solid
lines are obtained from the mean field solution Etf). From Eq.
(1) one finds € naud#=0.59=0.67, C cynawrdf=1.2>1,
gcuwa‘urw: ml2) =0.55, C cuvaurd 0=—1.0=0.23, and
C curvaturd 0=—0.9=0.27.

For the given variables this gives the critical densities

¢ =0.01,0.02,0.04. Sincén) increases linearly witte for

all three values ok without showing any sign of crossover,
we conclude that we are in a single pinning regime, contra

to the simple argument that we suggested above.

The reason for this discrepancy is that the pinning Sm?ﬁgver appearing for smaller the larger the value ok. For

introduce a new length scale in the problem, namely,

distance between the height to which the liquid would ris

without pinning stripeghg) minus the height to which the

liquid would rise with a density of one of pinning stripes,

(ho):

H=(hg)—(ho)= k[ V1—sin(6) — J1—sin(6")].

(10

the discussion after Fig.)3Furthermore, in Fig. 2 is shown

the averaged height of the triple lif@) versus the density
for different values of« for a fixed value of 6’ — 6|. One
otices a crossover from a single pinning regime to a collec-

éive pinning regime as one increasesand with the cross-

egiven values ofx, 6, 8" and for smallc’s a stripe does not

feel the presence of its neighbor stripes. @fcreases the
curvature of the triple line between two stripes increases.
This enhances the surface area and thereby the surface en-
ergy term in Eq.(2). Eventually the curvature becomes so
large that the cost in gravitational energy by lifting the liquid
between two stripes is outbalanced by the resulting decrease
in curvature and thereby surface energy. When this happens

Therefore if H plays a role in the onset of the single- g gysiem is in the collective pinning regime. Assuming that

collective pinning regime one should be able to go from on

pinning regime to another by changiegher |6’ — 6| or .
We have confirmed this statement by keepingonstant and
increasing the quantitys’ — 6| for various values ok (see
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FIG. 2. The averaged height of the triple li(le) vs the density
c for different values ofk. k=1 (<), 0.5(+), 0.25(0J), and 0.125
(X), respectively.§=/2 rad, #'=0.5 rad. From Eq(11) one finds
C cunvarurdk=1.0=0.15, € cyraurdx=0.9=0.30, T cynaurdx=0.25
=0.60, andC ¢yaurd k=0.125>1.

&he decay of the triple line away from a stripe is exponential

[23], we estimate that curvature effects become important

when the distance the triple line has decayed after one cor-
relation length becomes on the order of the averaged distance
between two stripes:

| &

—d*=Hexp — 1),

*

a0

e a
¢ k[ V1—sin(6)—1—sin(6’)]exp—1) @

Assuming the form of the triple line in between two pinning
stripes can be described as a segment of a circle, another way
of stating Eq.(11) is to say that collective pinning happens
once the radius of curvature between the stripes becomes on
the order of the averaged distance between the stripes. In
Figs. 2 and 3 we indicate the critical densitieg for the
various parameters used in the simulation. Giving that Eq.
(11) is only based on a simple order of magnitude argument,
the agreement with the onset of the collective pinning de-
duced from the simulations is striking. Besides, using Eq.
(12) for the simulations performed in Fig. 1, all giveca*
larger than one, meaning that collective pinning should not
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occur for these values of parameters, which is in agreemerithe variablet is supposed to take into account the contribu-
with Fig. 1. Based on these results, we conjecture that Edion in energy of the three-dimensional meniscus on the two-
(12) should also give a good estimate in the case of randordimensional projection due to interfacial and gravitational
pinning sites, withé describing the averaged value of the energy. The form of will be determined by the requirement
strengths of pinning sites, ardl the fluctuations about it.
(ho(c,k,a,6,0"))—hy,c—0;
IV. MEAN FIELD THEORY

ho(c,x,a,0,0"))—h,,c—1. 14
We now propose a simple mean field theory in order to {ho(C,x N)—hs (14

obtain the averaged height of the triple line, Minimizing the energy
(ho(c,x,a9,6,6")), as a function of the density of pinning

stripesc. The mean field assumption amounts to consideringe
just one pinning stripe, and finding the minimum energy of——
this configuration. Furthermore we simplify the problem, and
consider only a two-dimensional projection of the three-
dimensional liquid meniscus onto the solid; we will assumePdthia—yig cog 6")al — y g cog 0) + pgth,]
the functional form for the height as a function of distance

mean &Emean

Ghe =% ano =0,

A . a a+d
y away from the pinning stripe: Xklexg ——|—expg — ——
K K
y
:al: =hg: d]: = —Z|+h,. 1 2a 2(a+d
ye[0:al:h(y)=ho;y e [a:d]:h(y) hoexp( ~|+hs % pathox exp(__ —ex;{— (atd) }:0;
The two constant$; and h; will be determined from the a+d
requirement that the mean field enefyea, of the system [~ 71c cod0)d+pgtholx|exg — —|—exp — ——
attains it minimum E¢a0iS given by
+pgth;d=0. (15

1
__ 24 ’
Emeai=5 P9thea— 716C086")Nod Equation (15) is two equations with two unknowns from

i y which hy,h; can be determined. Nowhg(c,«,a4,6,6')) is
_ _ 2 given by the integral over the functional form E§2):
Ja dyyicco 0) hoex;{ K) YLecog 6)h,d

(a+ d)<h0(C,K,a0,0,0,)>

a+d 1 ) 2y a+d 1 2
+f dyz pgthoexp ——- +f dy5 pgthy a a+d X
a a =f dxh0+f dx hoexp{—; +hy], (16
0 a

a+d y
+ dypgthgh,ex - (13

a

which from the solutions of Eq15) can be written as

k?y ccog 0’ )ac
2t{a—[«k?/a(1llc—1)][exp —al k) —exp(—alck) >+ (1/2) k[ exp( — 2al k) — exp( — 2a/ck) |}

N YLecog 0)(1—c) .

(ho(c,x,a9,0,0"))=

1
pat 17
In order to fulfill the condition Eq(14) it can be seen from Ed17) that a proper choice dfis
= \/ e [ccog 6')+(1—c)cod )] (18)
2pg[c(1—sin(6’)+(1—c)(1—sin(6)]" '
Thus we end up with the form fam) given by
] P k?y,gCo0g 0" )ac
{ho(C,x,20,0,0")) = 2t{a—[«?/a(1l/lc—1)][exp—al/x) —exp(—alck)]?+ (1/2) k[exp( — 2al k) — exp( — 2a/ck) |}
cogh)(1—c
n Y160 0)( ) . (19

pot
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Finally we will assume that the width of the pinning stripes comes more important and the two-dimensional mean field
a depends on the density of pinning stripeg the follow-  picture breaks down.
ing way: In conclusion we have proposed a macroscopic Hamil-
tonian approach to the pinning of solid-liquid-vapor inter-
ce[0:0.5:a=ay; ce[0.5:1]:a=agL2(c—0.5), (200 faces due to the presence of stripes of obstacles. We find that
curvature effects play a crucial role for the transition from
the single pinning regime to the collective pinning regime.
We have proposed an estimate of the density of pinning
stripes for which the collective pinning happens, which is in
good agreement with the simulations of the Langevin equa-
tion. We conjecture the same estimate to be valid in the case
of random pinning sites. Finally a two-dimensional mean
field solution has been introduced that for small values of
|6’ — 6], gives an excellent approximation for the height of
:[he triple line.

which just states that no two pinning stripes will be neigh-
bors untilc=0.5, after which the width of a stripe increases
linearly with c.

In Fig. 3 is shown the averaged height of the triple line
(h) versus the density for different values o with a fixed
value of k and §'. One notices that the density for which
collective pinning begins clearly depends érand is well
described by Eq.11). Furthermore the two-dimensional
mean field solution gives a good description of the three
dimensional Langevin solution, with the best agreement fo
smallH in Eg. (10). This is to be expected since for large  J.V.A. acknowledges support from the Danish Natural
H the three-dimensional nature of the liquid meniscus beScience Research Council under Grant No. 9400320.
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