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We use a macroscopic Hamiltonian approach to study the pinning of a solid-liquid-vapor contact line on an
array of equidistant stripes of obstacles perpendicular to the liquid. We propose an estimate of the density of
pinning stripes for which collective pinning of the contact line happens. This estimate is shown to be in good
agreement with Langevin equation simulation of the macroscopic Hamiltonian. Finally we introduce a two-
dimensional mean field theory that for small strength of the pinning stripes and for small capillary length gives
an excellent description of the averaged height of the contact line.

PACS number~s!: 68.10.2m, 68.45.Gd, 68.45.Ws

I. INTRODUCTION

The spreading~wetting! of a liquid on a solid is important
in a widespread field of practical applications such as lubri-
cation, the efficiency of detergents, oil recovery in a porous
medium, and the stability of paint coatings@1#. The motion
of the interface is often extremely sensitive to impurities and
roughness, which tend to pin~stick! the interface. Different
situations arise for the motion of the boundary line between
a solid, liquid, and vapor~called the triple line or the contact
line! depending on the heterogeneity of the solid and depend-
ing on whether the liquid completely wets the solid surface
@2# or incompletely wets the solid@3–13#. Due to the pres-
ence of a microscopic precursor film that advances ahead of
the macroscopic liquid, the case of complete wetting is no-
ticeably insensitive to the heterogeneity of the solid. In the
incomplete wetting case obstacles tend to pin the contact
line, which makes the statics and dynamics of the contact
line highly sensitive to the specific form of the heterogeneity
of the solid. The accepted reason for this dependance is the
variability of the local wetting angle with roughness or fluc-
tuations in chemical composition. As a consequence of these
fluctuations, the contact angles for a proceeding or a reced-
ing liquid are not equal, and this hysteresis in the macro-
scopic wetting angle is the signature of the pinning of the
triple line by heterogeneities. Similar kinds of problems are
also encountered in other situations where an elastic body is
pinned by a random potential@14# such as flux pinning of
type-II high-Tc superconductors@15#, pinning of charge den-
sity waves@16#, pinning of magnetic domain walls@17#, and
dislocation pinning@18#.

We have proposed a macroscopic Hamiltonian approach
to study the pinning of a solid-liquid-vapor interface when a
solid is pulled vertically out of a liquid~called the immersion
geometry!. We investigate the simple case of the statics of an
array of equidistant stripes of obstacles, and we study how
the averaged height of the triple line depends on the capillary
length and the density and strength of the stripes. Investigat-
ing those dependences allows us to determine precisely the
conditions for which the interaction of the triple line with the

heterogeneities becomes a collective phenomenon. We hope
by studying this simple case to understand some of the im-
portant physics that is involved in the more complex case of
completely random pinning sites.

II. A MACROSCOPIC HAMILTONIAN APPROACH TO
THE PINNING OF SOLID-LIQUID-VAPOR INTERFACES

The geometry of the problem is chosen so that the liquid-
vapor interface is in thex-y direction and the solid is pulled
vertically out of the liquid in thez direction. The origin of
thez axis is taken to coincide with the liquid-vapor interface.
The local surface energies for the liquid-gas interfacegLG ,
the solid-liquid interfacegSL(y,z), and the solid-gas inter-
facegSG(y,z) determine a local force balance expressed by
Young’s @19# relation:

gLS~y,z!1gLGcosu~y,z!5gSG~y,z!. ~1!

u(y,z) is the local macroscopic contact angle between the
solid and the liquid.

The Hamiltonian reads
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wherer is the mass density of the liquid~assumed constant!
andg the gravity constant. The first term in this expression is
the gravity potential energy, the second term describes the
surface energy between the liquid and the gas, and the last
two terms account for the surface energies due to contact
between the solid wall and the liquid, respectively, gas phase
@20#.
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If one considers how the Hamiltonian changes by a small
change in dh(x,y), the three parametersgSL(y,z),
gSG(y,z), andgLG that enters the Hamiltonian, can be ex-
pressed in terms of just two variables, namely, the liquid-gas
surface energygLG and the macroscopic contact angle
u„y,h(x,y)… using Young’s relation Eq.~1!:

dH

dh~x,y!
5rgh~x,y!2gLG¹2h~x,y!$11@¹W h~x,y!#2%21/2

1gLG¹2h~x,y!$11@¹W h~x,y!#2%23/2@¹W h~x,y!#2

2gLGcos@u„y,h~x,y!…#d~x!. ~3!

The sole quantity that has the dimensions of a length is
called the capillary length and is defined as

k[A2gLG

rg
. ~4!

On the length scales for which the Hamiltonian Eq.~2! is
supposed to be valid, one can safely ignore fluctuations due
to the temperature, so the problem of finding the configura-
tion h(x,y) that minimizesH is a zero temperature problem.

One way to obtain the equilibrium configurationh(x,y)
described by the Hamiltonian Eq.~2! is to perform simulated
annealing using Monte Carlo simulation. Notice that since
only the changeof the total energy is needed in a Monte
Carlo update, the equilibrium state is completely specified by
the three variablesrg,u(y,z), andgLG . In Ref. @4# simu-
lated annealing was carried out for the caseu(y,z)5const,
and for the case of equidistant stripes of obstacles~with con-
tact angleu8) in the z direction. The caseu(y,z)5const
served as a check of the validity of Eq.~2! since the profiles
h(x,y) can be directly compared to various analytical results
@21#. Initial findings for the case of stripes of obstacles indi-
cated that the averaged height of the triple line,^h(0,y)&,
was linear in the density of pinning sites,c, for small values
of c and with a crossover to nonlinear behavior forc→1.
The density for which the crossover happened,c* , was an
increasing function of 1/k. This is to be expected, since for
small c a given pinning stripe does not feel the presence of
the other pinning stripes, and̂h(0,y)& can be obtained as a
simple superposition over all the pinning stripes of the pro-
files of individual stripes that pin the liquid-vapor interface.
On the other hand whenc becomes larger the pinning stripes
mutually ~collectively! lift the liquid, and the resulting pro-
file h(0,y) cannot be obtained as a simple superposition over
the pinning stripes. Therefore one expects that collective pin-
ning sets in once the averaged distance between pinning
stripes,d, becomes of the order of the capillary lengthk,
giving c*;1/d;1/k. We show in this paper that another
length scale enters the problem, so that the above mentioned
argument has to be modified.

It turns out that simulated annealing has the disadvantage
of requiring large amounts of computing time, since one
needs to perform a slow annealing sequenceT(t) @22# in
order to bypass metastable configurations. Furthermore, the
optimal sequenceT(t) depends on the parametersu, u8, c,
k, and the lattice constanta, and one should in principle
determine the optimal sequenceT(t) and the optimal step

sizeDh for each set of parameter values used in a simula-
tion. In this paper we have instead used Langevin equation
simulations of Eq.~3! since it was found to be computation-
ally more efficient than the Monte Carlo simulations. That is,
we have numerically solved the equation

dh~x,y!

dt
52G

dF

dh~x,y!
. ~5!

G is a mobility constant,t is the time that we let go to
infinity in order to find the equilibrium state, andF is the
free energy of the system, which we will assume is
F 'H, since we neglect fluctuations due to the temperature.
In order to take proper account of the boundary condition for
the contact of the liquid with the solid plate one has that

]h~x,y!

]x U
x→0

5cot@u„y,h~0,y!…#. ~6!

This condition has to be introduced via a Langrange
multiplyer as an extra term to the Hamiltonian Eq.~2!, or
equivalently one leaves out the contact terms in the energy
Eq. ~2! „which amounts to leaving out the term
2gLGcos@u„y,h(x,y)…#d(x) in Eq. ~3! and expresses them
instead via Eq.~6!….

When discretizing Eq.~5! the functional form ofu for a
realization of stripes of obstacles takes the form

u~y,z!5dmodulus~y,i !,0u81~12dmodulus~y,i !,0!u, ~7!

with u8 the value for the contact angle on the stripes of
obstacles,u the value of the contact angle between the
stripes of obstacles, and 1< i<L/a an integer determining
the density (0<c<1) of pinning stripes. One notices that
due to translational invariance in thez direction, there is no
pinning force acting when the liquid is pulled vertically out
of the liquid, whereas a rotation of the solid about an axis in
the x-y plane or a translation of the solid in they direction
produces a pinning force.

III. RESULTS

In Fig. 1 is shown the averaged height of the triple line
^h& versus the densityc for different values ofk from a
numerical calculation of Eqs.~5!–~7!. The discretization pa-
rameter was chosena50.04 ~the same for all the results
represented in this paper!, a typical time step Dt
'102421022 depending on the values ofk,u,u8,c; the lat-
tice sizes were chosen betweenL/a3M /a51003100 and
L/a3M /a51003400 with the larger lattice size for larger
k and the number of time steps to reach equilibrium in the
range 231042106. The distance between two pinning
stripes,d, is given by the total length of the solid in they
direction, divided by the total number of stripes:

d5
L

cL/a
5
a

c
. ~8!

Therefore the critical densityck* for which collective pinning
should set in, given by equating this distanced with the
capillary lengthk, is
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ck*5
a

k
. ~9!

For the given variables this gives the critical densities
ck*50.01,0.02,0.04. Sincêh& increases linearly withc for
all three values ofk without showing any sign of crossover,
we conclude that we are in a single pinning regime, contrary
to the simple argument that we suggested above.

The reason for this discrepancy is that the pinning stripes
introduce a new length scale in the problem, namely, the
distance between the height to which the liquid would rise
without pinning stripeŝ h0& minus the height to which the
liquid would rise with a density of one of pinning stripes,
^h08&:

H[^h08&2^h0&5k@A12sin~u!2A12sin~u8!#. ~10!

Therefore if H plays a role in the onset of the single-
collective pinning regime one should be able to go from one
pinning regime to another by changingeither uu82uu or k.
We have confirmed this statement by keepingk constant and
increasing the quantityuu82uu for various values ofk ~see

the discussion after Fig. 3!. Furthermore, in Fig. 2 is shown
the averaged height of the triple line^h& versus the density
c for different values ofk for a fixed value ofuu82uu. One
notices a crossover from a single pinning regime to a collec-
tive pinning regime as one increasesc, and with the cross-
over appearing for smallerc the larger the value ofk. For
given values ofk, u, u8 and for smallc’s a stripe does not
feel the presence of its neighbor stripes. Asc increases the
curvature of the triple line between two stripes increases.
This enhances the surface area and thereby the surface en-
ergy term in Eq.~2!. Eventually the curvature becomes so
large that the cost in gravitational energy by lifting the liquid
between two stripes is outbalanced by the resulting decrease
in curvature and thereby surface energy. When this happens
the system is in the collective pinning regime. Assuming that
the decay of the triple line away from a stripe is exponential
@23#, we estimate that curvature effects become important
when the distance the triple line has decayed after one cor-
relation length becomes on the order of the averaged distance
between two stripes:

a

c̃ *
5d*5Hexp~21!,

c̃ *5
a

k@A12sin~u!2A12sin~u8!#exp~21!
. ~11!

Assuming the form of the triple line in between two pinning
stripes can be described as a segment of a circle, another way
of stating Eq.~11! is to say that collective pinning happens
once the radius of curvature between the stripes becomes on
the order of the averaged distance between the stripes. In
Figs. 2 and 3 we indicate the critical densitiesc̃ * for the
various parameters used in the simulation. Giving that Eq.
~11! is only based on a simple order of magnitude argument,
the agreement with the onset of the collective pinning de-
duced from the simulations is striking. Besides, using Eq.
~11! for the simulations performed in Fig. 1, all give ac̃ *
larger than one, meaning that collective pinning should not

FIG. 1. The averaged height of the triple line^h& vs the density
c for different values ofk. k54 ~h!, 2 ~1!, and 1~L!, respectively.
u5p/2 rad.u851.5 rad.

FIG. 2. The averaged height of the triple line^h& vs the density
c for different values ofk. k51 ~L!, 0.5 ~1!, 0.25~h!, and 0.125
~3!, respectively.u5p/2 rad,u850.5 rad. From Eq.~11! one finds
c̃ curvature~k51.0!50.15, c̃ curvature~k50.5!50.30, c̃ curvature~k50.25!
50.60, andc̃ curvature~k50.125!.1.

FIG. 3. The averaged height of the triple line^h& vs the density
c for different values ofu. k50.5, u851.0 rad.u50.5 rad~3!, 1.2
~n!, p/2 ~L!, 20.5 ~1!, and 21.0 ~h!, respectively. The solid
lines are obtained from the mean field solution Eq.~19!. From Eq.
~11! one finds c̃ curvature~u50.5!50.67, c̃ curvature~u51.2!.1,
c̃ curvature~u5p/2! 50.55, c̃ curvature~u521.0!50.23, and
c̃ curvature~u520.5!50.27.
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occur for these values of parameters, which is in agreement
with Fig. 1. Based on these results, we conjecture that Eq.
~11! should also give a good estimate in the case of random
pinning sites, withu describing the averaged value of the
strengths of pinning sites, andu8 the fluctuations about it.

IV. MEAN FIELD THEORY

We now propose a simple mean field theory in order to
obtain the averaged height of the triple line,
^h0(c,k,a0 ,u,u8)&, as a function of the density of pinning
stripesc. The mean field assumption amounts to considering
just one pinning stripe, and finding the minimum energy of
this configuration. Furthermore we simplify the problem, and
consider only a two-dimensional projection of the three-
dimensional liquid meniscus onto the solid; we will assume
the functional form for the heighth as a function of distance
y away from the pinning stripe:

yP@0:a#:h~y!5h0 ;yP@a:d#:h~y!5h0expS 2
y

k D1h1.

~12!

The two constantsh0 and h1 will be determined from the
requirement that the mean field energyEmeanof the system
attains it minimum.Emean is given by

Emean5
1

2
rgth0

2a2gLGcos~u8!h0a

2E
a

a1d

dygLGcos~u!h0expS 2
y

k D2gLGcos~u!h1d

1E
a

a1d
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1

2
rgth0

2expS 2
2y

k D1E
a

a1d

dy
1

2
rgth1

2

1E
a

a1d

dyrgth0h1expS 2
y

k D . ~13!

The variablet is supposed to take into account the contribu-
tion in energy of the three-dimensional meniscus on the two-
dimensional projection due to interfacial and gravitational
energy. The form oft will be determined by the requirement

^h0~c,k,a,u,u8!&→h0 ,c→0;

^h0~c,k,a,u,u8!&→h1 ,c→1. ~14!

Minimizing the energy

]Emean

]h0
50;

]Emean

]h1
50,

rgth0
2a2gLG cos~u8!a@2gLG cos~u!1rgth1#

3kFexpS 2
a

k D2expS 2
a1d

k D G
1
1

2
rgth0kFexpS 2

2a

k D2expS 2
2~a1d!

k D G50;

@2gLG cos~u!d1rgth0#kFexpS 2
a

k D2expS 2
a1d

k D G
1rgth1d50. ~15!

Equation ~15! is two equations with two unknowns from
which h0 ,h1 can be determined. Noŵh0(c,k,a0 ,u,u8)& is
given by the integral over the functional form Eq.~12!:

~a1d!^h0~c,k,a0 ,u,u8!&

5E
0

a

dxh01E
a

a1d

dxFh0expS 2
x

k D1h1G , ~16!

which from the solutions of Eq.~15! can be written as

^h0~c,k,a0 ,u,u8!&5
k2gLGcos~u8!ac

2t$a2@k2/a~1/c21!#@exp~2a/k!2exp~2a/ck!#21~1/2!k@exp~22a/k!2exp~22a/ck!#%

1
gLGcos~u!~12c!

rgt
. ~17!

In order to fulfill the condition Eq.~14! it can be seen from Eq.~17! that a proper choice oft is

t5A gLG

2rg@c~12sin~u8!1~12c!~12sin~u!#
@ccos~u8!1~12c!cos~u!#. ~18!

Thus we end up with the form for̂h& given by

^h0~c,k,a0 ,u,u8!&5
k2gLGcos~u8!ac

2t$a2@k2/a~1/c21!#@exp~2a/k!2exp~2a/ck!#21~1/2!k@exp~22a/k!2exp~22a/ck!#%

1
gLGcos~u!~12c!

rgt
. ~19!
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Finally we will assume that the width of the pinning stripes
a depends on the density of pinning stripesc in the follow-
ing way:

cP@0:0.5#:a5a0 ; cP@0.5:1#:a5a0L2~c20.5!, ~20!

which just states that no two pinning stripes will be neigh-
bors untilc50.5, after which the width of a stripe increases
linearly with c.

In Fig. 3 is shown the averaged height of the triple line
^h& versus the densityc for different values ofu with a fixed
value of k and u8. One notices that the density for which
collective pinning begins clearly depends onu and is well
described by Eq.~11!. Furthermore the two-dimensional
mean field solution gives a good description of the three-
dimensional Langevin solution, with the best agreement for
small H in Eq. ~10!. This is to be expected since for large
H the three-dimensional nature of the liquid meniscus be-

comes more important and the two-dimensional mean field
picture breaks down.

In conclusion we have proposed a macroscopic Hamil-
tonian approach to the pinning of solid-liquid-vapor inter-
faces due to the presence of stripes of obstacles. We find that
curvature effects play a crucial role for the transition from
the single pinning regime to the collective pinning regime.
We have proposed an estimate of the density of pinning
stripes for which the collective pinning happens, which is in
good agreement with the simulations of the Langevin equa-
tion. We conjecture the same estimate to be valid in the case
of random pinning sites. Finally a two-dimensional mean
field solution has been introduced that for small values of
uu82uu,k gives an excellent approximation for the height of
the triple line.
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@7# J. M. di Meglio and D. Que´ré, Europhys. Lett.11, 163~1990!;

J.-M. di Meglio, ibid. 17, 607 ~1992!.
@8# J.A. Marsh and A.M. Cazabat, Phys. Rev. Lett.71, 2433

~1993!; Y. Pomeau, J. Phys.~Paris! Lett. 44, L585 ~1983!.
@9# T. Ondarcuhu and M. Veyssie´, Nature352, 418 ~1991!.

@10# G.-D. Nadkarni and S. Garoff, Europhys. Lett.20, 523~1992!.
@11# N.Y. Liang and C.K. Chan~unpublished!.
@12# E. Bayramli, T.G.M. Van de Ven, and S.G. Mason, Can. J.

Chem.59, 1954~1981!.
@13# A. Paterson, M. Fermigier, P. Jenffer, and L. Limat, Phys. Rev.

E 51, 1291~1995!.
@14# Other recent papers where people have studied the pinning of

an interface moving through a random potential are: K.
Sneppen, Phys. Rev. Lett.69, 3539 ~1992!; M. Dong, M.C.
Marchetti, A.A. Middleton, and V. Vinokur,ibid. 70, 662
~1993!; H. Leschhorn and L.-H. Tang, Phys. Rev. Lett.70,
3832~1993!; Z. Olami, I. Procaccia, and R. Zeitak, Phys. Rev.

E 49, 1232~1994!; H.J. Jensen, J. Phys. A28, 1861~1995!.
@15# A.I. Larkin and Y.N. Ovchinnikov, J. Low Temp. Phys.34, 409

~1979!.
@16# L. Sneddon, M.C. Cross, and D.S. Fisher, Phys. Rev. Lett.49,

292 ~1982!.
@17# G. Grinstein and S.-K. Ma, Phys. Rev. B28, 2588~1983!.
@18# U.F. Kocks, A. Argon, and M.F. Ashby,Thermodynamics and

Kinetics of Slip, Progress in Materials Science~Pergamon,
New York, 1975!.

@19# T. Young, Philos. Trans. R. Soc. London95, 65 ~1805!.
@20# After publication of Ref.@4# we learned that a similar approach

Eq. ~2! was used in Ref.@5#, but with double periodic wetta-
bility in y andz with wavelengthsl, ln , respectively. Despite
the similarity of the Hamiltonian Eq.~2!, the analysis in Ref.
@5# was quite different from Ref.@4# and what follows in this
paper.

@21# See, e.g., L.D. Landau and E.M. Lifshitz,Fluid Mechanics,
Course of Theoretical Physics Vol. 6~Pergamon, New York,
1994!, Chap. VII or J.S. Rowlinson and B. Widom,Molecular
Theory of Capillarity~Oxford University Press, Oxford, 1982!.

@22# T is the temperature as a function of Monte Carlo timet; in
Ref. @4# T was chosen proportional tot, i.e., T(t)
5T0(12t/N) with N the total number of Monte Carlo steps
andT0 the initial temperature.

@23# The deformation of the contact line is known to be logarithmic
without the gravity term in Eq.~2! @3#, but since gravity intro-
duces a length scale in the problem~the capillary length! the
decay of the contact line becomes exponential@21#.

5010 53JO”RGEN VITTING ANDERSEN AND YVES BRÉCHET


